Analysis of the LSTM to Update the Forget Gate to Improve Pattern
Learning

Preston Robertson

Department of Industrial and Systems Engineering, Mississippi State University, Mississippi State, MS,
39762 USA

Abstract

The Long Short-Term Memory (LSTM) model is a neural network that specializes in
time-series based data. The LSTM has long stood as the best model for time-series based
data sets. The goal of this paper is to analyze how the LSTM behaves given different
activation functions with the end goal of updating the forget gate to allow for pattern
learning. Through the trials of the activation function, a custom activation function is
introduced, the Squish function. After all the activation functions are tested, the results
show that proper tuning of the Squish function could possibly yield better results than
the base hyperbolic tangent functions. The results also showed no correlation between
exploding and vanishing gradients having a significant impact on the accuracy of the LSTM
model. However, the model is hyper sensitive to the change of the recurrent activation
function.

Keywords: Long Short-Term Memory, Squish, Neural Network, Activation Function

1. Introduction

The problem of analyzing time-series based data has been a goal of researchers, since
normal artificial neural network learning cannot be directly applied. The architecture of a
standard neural network or a convolutional neural network (CNN) can not change or update
as time goes on after training the model [1]. For example, the artificial neural network or
CNN will handle image data but can not have a video as the input data because the
CNN is unable vectorize video data. That is where the recurrent neural network (RNN) is
implemented [2]. The architecture of the recurrent neural network allows for a feed-forward
network that learns from results from previous nodes. The RNN models also cannot have
a video format as input data; however, the model processes each image in the video data
in such a way that the model still learns as if the images were still in video formats. This

Email address: pgr4l@msstate.edu (Preston Robertson)

Preprint submitted to GE 6518: Engineering Writing and Presenting Paper 1 June 22, 2022

change to architecture allows for new types of data to be analyzed, such as video, speech,
vibrations, robot control, and sign language translation [3].

The RNN model has a common issue of vanishing gradient as the number of epochs
grows [4]. An epoch is the iteration of learning in a neural network. For example, the first
pass of data would be the first epoch, the second pass would be the second epoch, etc.
This vanishing gradient refers to the learning slowdown of the model and occurs due to the
model’s infinite node nature. For example, cell 1 will have a larger impact on the results
of cell 2 than cell 43’s results impact on cell 44. This is due to the amount of information
being transferred, with the old information eventually overshadowing the new inputs. The
Long Short-Term Memory (LSTM) model is an attempt to fix this issue through adding
a variable named "cell state” [2]. The LSTM was initially made to revolutionize speech
detection and is even used in popular services such as Apple’s Siri. The LSTM helps fix the
vanishing gradient problem by giving each cell the ability to forget old inputs. Before the
discussion of how the LSTM model forgets, it is important to establish how the information
is translated throughout each cell. Each cell has its own output (which is the objective of
the artificial neural network) and a cell state that is a recorded value transferred through
each cell [5]. This how each cell forgets data. Each cell takes the previous layer’s output
and the current cell state and compares them. The more these values do not match, the
more the cell forgets its cell state. This process of updating these first weights and biases
is called the forget gate [6].

The forget gate has had significant impact on the analysis of speech data [7], which is
partially the reason for the increased accuracy of speech recognition in products such as
Amazon’s Alexa. However, the LSTM model is not yet perfect. The forget gate has issues
itself. The cell state is a single value propagating through each cell [8]. When the cell state
drops to a significantly low value in the forget gate, then essentially all old information
is lost. This is an issue due to the pattern nature of data sets. For example, let’s say
the LSTM model is analyzing stock prices. If the stock price has a significant decline
then model will forget the old information and adjust to the new information. However,
a researcher may notice the pattern is a seasonal issue (such as the stocks of a swimming
wear company). The LSTM model will never find this pattern and will have significant
error when the pattern repeats. The second issue with related to the cell state being a
single value, isthe vanishing gradient problem; the third cell will have a larger impact on
the cell state value than the impact of the 45th cell in the LSTM model. To address these
limitations, the objective of the paper is to further understand the effects of different parts
of the LSTM model with the end goal of improving the LSTM model’s forget gate.

2. Literature Review

The first LSTM model was proposed in 1997 as a solution to the RNN model’s difficulty
handling long term dependencies in data [9]. The model has found great success in speech
recognition data, DBLSTM-HMM by Alex Graves at the University of Toronto [10]. The

original LSTM model initially only added the cell state to the RNN model. This model
architecture was very popular in the early 2000s before the invention of the forget gate. In
2000, the forget gate was added by Gers, Schmidhuber, and Cummins [11] in an effort to
correct the oversaturation that forms in the model. Due to the inability to forget data, the
cell state would not properly update to represent the new information. For example if an
original LSTM model predicts where Jim eats lunch; the results would most likely be as
followed. Jim went to his favorite restaurant for the last 5 years, but then it closed down
for the winter season. Without the ability to forget, the LSTM model will continue predict
Jim will eat at the restaurant despite that not being the correct output value. This is due
to the oversaturation of the previous data which happens in several data sets [12] such as
predicting stocks since there are outside factors that the model can not account for. These
outside factors allow for error in the neural network. This new LSTM model gains the
ability to selectively forget information through the architecture below in Figure 1.

® ® @
i t

e |\
X (Tr > —»>
Qant>
A Q A
[0] [tanh] [0]
—> —»
/N J J

&) ® ©

Figure 1: Architecture of LSTM Model [13]

v

The LSTM architecture shown above is how the overall LSTM function works. The
model has an input and an output as a normal neural network would have. The input is
denoted by Xy, and the output is denoted by h;, where ¢ represents the epoch (or time).
Where X;_; is the input of the previous LSTM cell. The denotation of the output gate is
h; instead of O; due to the other function of this value as the hidden state. The hidden
state is the short-term memory of the LSTM, and is how the LSTM remembers the recent
output of the model. How the hidden state interacts with the LSTM model will be covered
in the next section. The other line through the LSTM model is the cell state, or ¢;. The cell
state is how the model keeps a long term memory, and is changed through each iteration.
The cell state keeps information from old iterations and is unaffected by the final output
of the LSTM cell.

2.1. The Forget Gate

The forget gate is the first part of the process in the LSTM model (2). This is where
the previous hidden state, h;_1, and the current input, x;, are used to determine how much
of the previous cell state, ¢;—1, is kept (1).

ft:U(WfX.Z't+Utht_1+bf) (1)

This is done by multiplying the hidden state and the input by trainable parameters
known as weights. Then a bias is added on top of these parameters before going through
a sigmoid activation function (2).

1

S l4e® 2)

This sigmoid activation function can be changed to other activation functions but the
gradient of the sigmoid is desirable since it keeps values between 0 and 1. The position
held by the sigmoid activation function is known as the recurrent activation function. This
acts a percentage scaling value; for example, if we want to keep 60% of the cell state, then
the weights and bias will be tuned to output 0.60 which will effectively only keep 60%
of the cell state’s information. Equation (6) shows how the forget gate mathematically
accomplishes this. Figure 2 shows how the forget gate fits into the overall model referenced
in Figure 1, the forget gate is referred in the graphic and mathematical models as f;.

g

Figure 2: Architecture of the Forget Gate [13]

2.2. The Input Gate

The input gate, the second gate of the LSTM model, is where the new proposed cell
state is introduced to the equation. This determines how much the current cell state should
change to meet current requirements of the LSTM model. The input gate is a specific value
(3) in the LSTM model but all functions in this subsection fall under what is considered
the input gate.

it = O‘(Wi X xy+U; X hi—1 + bl) (3)

The input gate value is what determines how valuable the new change is to the overall
model accuracy. The input gate, much like the forget gate, defaults to using the sigmoid
function as the recurrent activation function. The other value calculated in the input gate
step is the suggested change to the cell state. This is determined through using the set
activation function on the input values of this step (4).

¢, = tanh(W, x @y + Ue X hy—1 + be) (4)

The default activation function is typically the hyperbolic tangent function (5). Since
it is a bounded function that goes from -1 to 1 instead of the sigmoid function only going
from 0 to 1. This ability to have a negative cell state has shown to benefit the LSTM
model. The negative cell state effectively lets RNN change the direction of cell state. This
is because the suggested cell state more shows the direction the cell state should go rather
than a specific value.

(5)

Now that the suggested changes to the cell state have been gathered through the input
gate and the amount of information needed to be forgotten has also been collected it is
time to combine the new information to update the cell state to its new value. We do this
by multiplying the previous cell state by the forget gate and the suggested cell state by the
input gate. The equation is shown below (6).

ct = fi- i1+ ¢ (6)
0
i, C
h

Figure 3: Architecture of the Input Gate [13]

2.83. The Output Gate

The output gate is where the output of the LSTM cell is decided. This process takes
a similar approach to the methods above by combining the hidden state with the current
input through a set of weights and biases then putting that value through the recurrent
activation function (7). This value is recorded as the output gate.

o — O'(WO X ¢ + Uo X ht,1 + bo) (7)

The final output is then found by multiplying this o; by the cell state that is filtered
through the set activation function (8), leaving the hidden state of the current cell (this
value is also referred to as the output). This cell is now complete, and the new hidden state
(ht) and cell state (c;) are then used as the input of the next LSTM cell where the process
begins anew. Figure 4 shows visually how the output gate fits into the LSTM model.

ht = oy - tanh(c;) (8)

h . h,

Figure 4: Architecture of the Output Gate [13]

3. Methodology

For the analysis conducted in this paper, we will see the different ways that the ac-
tivation functions can be changed, and how how these changes affect the outcome. The
changes will be made to both the main activation function and to the recurrent activation
functions, and should have drastic impacts on the accuracy of the models since some of
the activation functions tested will be unbounded rather than original bounded functions.
This experiment will simply test the accuracy and convergence rates of the model to see
the activation functions performance in the given scenario. According to the literature,
the answer has already been solved with the current activation functions, the best being
hyperbolic tangent (5) as the main activation function and the sigmoid function (2) as the

recurrent activation function. Therefore the objective of this study activation functions
affects accuracy, and not determining which is the best. With this in mind it will be more
important to discuss the gradient of the activation functions tested. The inclusion of a
custom activation function known as the Squish will also be included. As of the writing of
this paper, the Squish function has not yet been published so it will be briefly discussed
ahead. Different activation functions will be tested at both the main and recurrent to see
the effect on the test accuracy. The activation functions are shown below, with the ReLU
(9), Swish (10), and SoftMax (11) functions chosen to also be compared.

ReLU = max(z,0) 9)

Swish = 1 —IC—Cel“ (10)

SoftMax = i (11)
C 14 |

The ReLU function was chosen due to its overwhelming popularity in most neural
networks, and its exploding gradient. The LSTM model’s reaction to an exploding gradient
is important to see in this experiment. Another function with an exploding gradient, the
Swish was chosen due to the negative half of the function having a valuable trait. The
comparison between the ReLU Function and the Swish function will show how important
the "swish” gradient in the Swish function is in the LSTM. The Swish was also chosen
since it is part of the Squish function, and comparing them will show how important the
differences are. Finally the SoftMax function was chosen due to its vanishing gradient and
it being part of the Squish function. If the SoftMax performs the best then it will show
the importance of vanishing gradients and the need for simple activation function design
within the architecture of the LSTM model.

The important takeaway from this experiment is how the LSTM acts with different
kinds of input values at each gate in the cell. This is why the experiment will focus on
changing the activation functions rather than changing the data set. The data set chosen
to run the experiment is the MNIST data set, a commonly used data set for experiments
in neural networks. The MNIST is an image based data set that is roughly 60,000 hand
drawn images of numbers. It is a classification data set trying where the neural network’s
objective is to determine the number depicted in the image.

The LSTM model used in this experiment will have architecture as follows, two LSTM
cell layers stacked followed by a dense net classification layer. Each of the LSTM cell layers
will have the activation functions changed, while all other factors will remain the same.
The images will be fed through the LSTM model 28 pixels at a time to turn the MNIST
into a time-based data set and will have a mini-batch size of 64 pixels. Each test will run
for 10 epochs and then the final loss and accuracy will be recorded and compared between
each model.

3.1. The Squish Function

The Squish function (12) is a combination function with the objective of capturing
properties from several different activation functions.

. T D Xx T
_ T 12
f(z) mm(1+ex,1+€x>+max<1_’x|,0> (12)

The combination can be adjusted through this p value, where p is a percentage inclusion
of the specified function. In this usage of the Squish function, the Swish function will be
used in for all negative inputs. It has been determined by through research of literature,
that the shape of the gradient for the negative side of the Swish function is a highly
desirable trait ([14]). The exploding gradient also works well since it allows the p value to
give a percentage want of that exploding gradient to be applied to a separate vanishing
gradient. To achieve the vanishing gradient, the soft max function will be used. Since
both functions cross through zero allowing for a continuous gradient. Figure 5 shows the
different gradients of the Squish function given specific p value. For the purposes of this
experiment, the p value will be set to 0 since it is already known that bounded functions
perform the best. For future experiments outside the RNN, the p value can adjusted to find
the best solution, but due to time restriction and the Squish function taking on average
38x longer per epoch, we will only run the Squish value once.

3
— p=0

p=01

p=025
— p=033

p=05
— p=0487
3 p=075
p=09
2 p=1

5

0 —

-3 2 0 2 3

Figure 5: Gradients of the Squish Function

4. Experimental Results

After the experiment was conducted, the best performing duo activation functions was
the base model with some close contenders. The results of the experiment are found
in Table 4). The Squish and Swish in the main were top contenders for beating out
the base model, it seems as the negative component in the main activation function can
be of value. The Swish/Squish’s derivative change in the negative side can also prevent

learning slowdown, and this can be seen through both of their quick convergence rate
and rapid approach to high accuracy scores as shown in Figure 6 and Figure 7. The next
noteworthy result is that the SoftMax function failed, possibly due to error in calculations or
function calling; however the Swish function also failed in the recurrent activation function
position. The negative values from the Swish and SoftMax functions could of possibly led
to the convergence failures. Especially since both activation functions can experience major
learning slowdown in the negative component as well. The next major notable result is
that the exploding gradient performed almost as well as the vanishing gradient activation

functions. This shows that adjusting/tuning the Squish function will most likely lead to
great success.

Table 1: Results of Experiment
H Activation Function Location

Loss Accuracy H

Base Model N/A 0.03406 0.9911

Squish Main 0.0379 0.9986

Squish Recurrent 0.0389 0.9897

ReLU Main 0.0420 0.9872

ReLU Recurrent 0.1710 0.9424

Swish Main 0.0365 0.9882

Swish Recurrent 1.5770 0.4990
SoftMax Main 2.3009 0.1134
SoftMax

Recurrent 2.3010 0.1135

Loss per Epoch

—— Base Model
v —— Squish in Main
1 === Sqguish in Recurrent
1 —— Rell in Main
=== RellU in Recurrent
1'. — Swish in Main

00

Figure 6: The Loss per Epoch without the Convergence Failures

5. Conclusion

Overall, after learning about the forget gate and its creation, it has seemed to be missing
a variable. This look into the architecture and design of the LSTM has shown that there

Accuracy per Epoch

10 =

08]

| — Base Model

04 f' = Squish in Main

] === Squish in Recurrent

rl — FRell in Main

0z J' === RellU in Recurrent
— Swish in Main

Accuracy

2 4 B 8 10
Epochs

Figure 7: The Accuracy per Epoch without the Convergence Failures

are still places to improve the LSTM model. The Squish function proved to be a useful
tool and if properly tuned could show better results than the standard for the LSTM. This
study has also shown that in future work for improving the architecture of the forget gate it
is crucial to run that value through the recurrent activation function since non-percentage
based values seem to lead to a high chance of convergence failure. Overall the LSTM
did not behave as expected with the changes from vanishing to exploding gradient and
non-negatives to negatives in gradient showing high accuracy results. The methodology
was built around showing major differences in results, that simply did not occur in this
experiment and can be improved upon. This experiment can be improved by having a
higher amount of epochs and data sets to further investigate the differences in results.
The different activation functions showed strange properties of the LSTM that will require
future work to truly understand why the vanishing and exploding gradients perform at the
same level despite the LSTM model’s use of the activation function as a percentage. These
results could have been a product of the low amount of epochs trained not allowing for the
LSTM model’s cell state to ”explode” or maybe that is not an issue due to the forget gate.

Overall, this experiment shows surprising results that should be evaluated.

References
[1] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-
shelf: an astounding baseline for recognition,” in Proceedings of the IEEE conference

on computer vision and pattern recognition workshops, 2014, pp. 806-813.

[2] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term
memory (Istm) network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132306, 2020.

[3] H. Xiao, M. A. Sotelo, Y. Ma, B. Cao, Y. Zhou, Y. Xu, R. Wang, and Z. Li, “An
improved Istm model for behavior recognition of intelligent vehicles,” IEEE Access,

vol. 8, pp. 101 514-101 527, 2020.

10

[4]

[5]

[9]

[10]

[11]

[12]

[13]

S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag problems,”
Advances in neural information processing systems, vol. 9, 1996.

F. Qian and X. Chen, “Stock prediction based on lstm under different stability,” in
2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA). IEEE, 2019, pp. 483-486.

Z. Huang, W. Xu, and K. Yu, “Bidirectional Istm-crf models for sequence tagging,”
arXiw preprint arXiw:1508.01991, 2015.

C. Zhou, C. Sun, Z. Liu, and F. Lau, “A c-Istm neural network for text classification,”
arXiv preprint arXiw:1511.08630, 2015.

F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with
Istm recurrent networks,” Journal of machine learning research, vol. 3, no. Aug, pp.
115-143, 2002.

Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: Lstm cells
and network architectures,” Neural computation, vol. 31, no. 7, pp. 1235-1270, 2019.

A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recognition with deep bidi-
rectional Istm,” in 2013 IEEE workshop on automatic speech recognition and under-
standing. IEEE, 2013, pp. 273-278.

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual predic-
tion with Istm,” Neural computation, vol. 12, no. 10, pp. 24512471, 2000.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber, “Lstm:
A search space odyssey,” IEEFE transactions on neural networks and learning systems,
vol. 28, no. 10, pp. 2222-2232, 2016.

N. Pranj52, “Long short term memory: Architecture of Istm,” May
2020. [Online]. Available: https://www.analyticsvidhya.com/blog/2017/12/
fundamentals-of-deep-learning-introduction-to-lstm/

P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” arXiv
preprint arXw:1710.05941, 2017.

11

https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/

	Introduction
	Literature Review
	The Forget Gate
	The Input Gate
	The Output Gate

	Methodology
	The Squish Function

	Experimental Results
	Conclusion

