Course Project: League of Legends

Preston Robertson

Department of Industrial and Systems Engineering, Mississippi State University, Mississippi State, MS,
39762 USA

Keywords: Long-Short Term Memory, Squish, Neural Network, Activation Function

1. Dataset Description

1.1. Introduction to the Dataset

This dataset is on an online competitive game called League of Legends. I chose this
dataset to challenge myself; the dataset’s unique nature will require me to apply techniques
I have learned in classes this semester, while teaching myself and applying new techniques.
The objective of the dataset is to find the features that will most impact the win, so
that it is easier to balance the game. “Balancing” refers to updating the game, such as
downgrading strategies that are too strong and upgrading strategies that feel too weak.
This document will serve as the preliminary to champion balance by correlating specific
stats to a win, so that in the future someone may correlate these stats to champions in
the game. This goal may seem convoluted; however, each game will have 5 winners and 5
losers meaning that a single champion’s impact on the game is roughly 10%. If a champion
is unbalanced, being double the strength of another champion, that only raises the 10%
to 20%. Due to the law of averages, each champion will still have around 50% win rate
despite being too weak or too strong. Therefore to properly balance a champion, one must
look at the correlation between stats of the champion to the win-rate of each of those stats.
This effectively takes out the problem of bias since every game has at least one winner and
one loser. This dataset has 23,752 data points and 24 features (or columns). Features refer
to a measurable piece of data, such as champion name, damage done, etc. These features
do not refer to game features but rather the name of the data being measured. It is a
complicated dataset, with several variables requiring several stages of feature modification
to run the code. The code is also large enough to have significance. This dataset was
specifically chosen due to my prior familiarity with the data, allowing me to focus on the
machine learning techniques.

Email address: pgr4l@msstate.edu (Preston Robertson)

Preprint submitted to IE 8990 - Spring 2022 September 1, 2022

1.2. Brief Description of League of Legends

The online competitive multiplayer game, League of Legends is a part of the MOBA
genre of games and is considered the most widely popular game of all time. Its most recent
tournaments have made more money than the Superbowl; in 2020 League of Legends made
1.7 billion dollars ??. The premise of the game is two teams fighting to destroy the enemy
Nexus. Below is the map of the game so it is easier to reference the variables given.

SUMMONER'S
WORK IN TRQ

Turret Turret

Tufret Ttirret

Turret

Turret

: Sq Y
Ol?/'é/.
‘b,"_.

.7

Turret

Blue Nexus

Figure 1: Map of League of Legends ([1])

1.3. Description of the Map

The map of League of Legends contains 3 paths, each a lane with a corresponding name.
Top Lane, Mid Lane (short for Middle), and Bot Lane (short for Bottom Lane). Each lane
spawns “minions” to help push lanes. These minions are very easy monsters to defeat and
provide gold if a player lands the killing blow. Each lane has 3 towers and an inhibitor.
All three of one lane’s tower 4 inhibitor need to be destroyed before a player can reach the
nexus. The towers provide protection to players by hurting enemy champions when they
are in range. The inhibitor provides no uses to ally team; however, if a player destroys

the enemy inhibitor then ”Super Minions” will spawn in that lane. These buffed minions
help push to finish the game. There are also forests called the Jungle in the middle of
these lanes. In the jungle there are several monsters’ worth gold and that grow stronger
as the game goes on. Some monsters, if killed, can even provide special bonuses. All these
monsters can be killed by one player. The blue section seen in 1 that splits the map into
two sides is known as the river. This is the equivalent of the half-way line in soccer. In
this part of the map, Large Monsters spawn that require a group effort to takedown but
give huge bonuses.

1.4. Description of the Gameplay

The game is known for its complexity and if you want a comprehensive guide, I have
provided a link that I think does an excellent job (([2]) and ([3]) provide great compre-
hensive guides). This paper will explain only the minimal necessities to follow the data.
There are 5 players on each team and each player plays a champion. This champion is a
character with unique gameplay, stats, and abilities. These 5 players will each fill a specific
role: Top Lane goes to the Top Lane, Mid Lane goes to the Mid Lane, the Jungler goes
to the Jungle, and the Attack Damage Carry (ADC) and Support go to the Bot Lane. In
each of their respective locations, each role attempts to make gold and level up. The gold
is used to buy items (each with unique effects, and every champion picks from the same
pool of items), so more gold means a player can buy more items. Player get gold by killing
different things on the map (for example: minions, monsters, large monsters, and enemy
players) and can also be obtained by everyone at a constant passive rate. The more items
a player has the stronger and more capable they are, and therefore the more likely their
team is to win the game. Levels occur naturally when the player gains experience by being
around combat or by killing enemy units (same as gold) this; however, does not passively
increase and must be earned. With each level up the basic stats become stronger, which
means the player is stronger and can level up current abilities or unlock new abilities.

2. Data Analyzation, Visualization, and Pre-processing

2.1. Further Description of Dataset

The dataset went through preliminary data analysis, which is discussed in this section.
First the feature selected to study is “Win” which is a Boolean variable; this means that
the machine learning models used in this experiment will be classification models. Basic
analysis was done on the dataset, which can be found in the appendix as Figure 2: Basic
Data Analysis of Numerical Features. Looking at this information, dropping the feature
“Damage to Turrets” could increase the accuracy of our model since the standard deviation
is higher than the mean. It can also be gathered that this data could cut the farthest data
points to see an increase in model accuracy since the maximum and minimum are so far
from the mean in most features. However, I will not take out these variables since the
objective of this experiment is to change as little as possible to not interfere with results.

After the data analysis was completed, the next step was running checks on each feature
to ensure that each was capable for this experiment. A cardinality check and a missing
percentage were taken to ensure these qualities. The cardinality was taken since if a feature
has far too many unique variables, then the feature will only harm the machine learning
algorithms. This missing percentage was taken to ensure no feature had too many variables
missing where data analysis on that feature would be impossible. Refer to the appendix
for Table 5: Cardinality of Each Feature and Table 6: Percentage Missing of Each Feature
for specifics. This analysis has shown that no features were missing variables and that
only one feature has too high cardinality to be included. This feature was the anonymized
player name that basically became a second index. This feature will be dropped since it
serves no value in this dataset for either machine learning algorithms or game balance.

2.2. Data Visualization

The next preliminary data analysis that were conducted on the dataset were a heat
map (correlation matrix) and a scatter plot. A heat map (shown in Figure 2) is basically a
correlation matrix that shows how much any two features interact with one another. The
heat map improves upon this idea by also adding the temperature value so it can easily be
seen how much two variables correlate. This temperature value can be any value between
-1 and 1, where -1 is a sign of perfect negative correlation and +1 is a sign of perfect
positive correlation. The darker the color on the heat map, the “colder” the temperature
and vice versa for the brighter colors. Looking at the Figure 2, some values have very high
correlation; however, looking at most of these variables, most features will increase in value
as the time moves forward. This gets rid of most of the correlation since these values are
interconnected through the feature “duration”. Even with this information, there are some
values of note. For example, there is a high correlation between “Win” and “Win Rate of
Champion” (the highest correlation to win) while “Win” and “Champion” do not correlate.
This shows the problem discussed earlier in this experiment where the natural bias of the
game does not allow for just a normal correlation to be sufficient. Other information to
gather from this heat map, is that values previously thought important for a winning team
are not very highly correlated to a win. This shows the necessity of such data analysis to
the game. Not much else should be deciphered from this heat map since it is helpful when
visualizing data, but the most precise with results.

Correlation Matrix ;.

hamp -

GoldEamed

Kills

Deaths

Assists

totalDamageDealtToChampions

damageDealtToTumets

visionscare

totalDamageTaken

turretKills

inhibitorKills

totalMinionsKilled

champlevel

vardsPlaced

firstBloadKill

firstBloodAssist

WRgeneral

WRchamp

Duration_secs

Gold_Famed_per Minute

Champ -
GoldEamed -
uisionScore -
turretKills -
WRgeneral -
WRehamp -
Duration secs -
per_Minute -

damageDealtToTurrets -
talDamageTaken -

otalDamageDealtToChampions -

Figure 2: Heat Map of the Dataset

The next data visualization done to the dataset was a scatter plot. A scatter plot
graphs each feature with respect to each other. This can be very useful for seeing trends
visually before any data analysis is done. Figure 3 shows the specifics of each section of
the scatter plot. Not much can be gathered from the champion section of this scatter plot
since each champion is given their own x value and there is no way to see the x values
with the size of this scatter plot. Comparing “Kills” and “Deaths”, it is possible to see the
problem discussed earlier with the heat map. Looking at both stats, it is easy to see that
the amount of gold earned increases no matter what due to each variable being connected
through the duration of the game. However, it is possible to see that each variable has its
own effect in the scatter plot still, since there is a difference between “Kills” and “Deaths”.

The main take away from the scatter plot is the difference being consolidated data and
more spread-out data points for all features. That is best information to gather from this
scatter plot since the scatter plot is used to visualize the data and not supposed to be used
for thorough data analysis.

Scatter and Density Plot

] l.«
“..
it
|||I.
i

v e

wrreikills

Figure 3: Scatter Plot of the Dataset

2.8. Data Pre-Processing

After the dataset was thoroughly analyzed, the data was processed to prepare it to be
put through machine learning algorithms. This set-up is rather short since the point of
analysis is to be thorough and not exclude many features or samples. Since time is not an
issue with this dataset it is not a problem to perform feature reduction on the dataset. This
is important to keep track and ensure the machine algorithm does not lose value of any
one feature. Despite the Principal Component Analysis method mentioned in the project
proposal, it will not be implemented for those reasons stated above.

First data pre-processing done on the dataset was using a “One Hot Encoder”. This

algorithm splits up string values into their own column and turns into a Boolean value.
For example, in this dataset, Position was changed into 4 new features with capability
of displaying all 5 unique values in that feature. This was used on the features: Team,
Position, and Win. This method can quickly accumulate the number of features a dataset
has, so I thought it was important to include the lowest cardinality string variables to allow
more the most accurate predictions without having 100+ features. After this is applied to
the dataset, there are now 27 features (including the features removed previously). The rest
of the string values were processed through a string indexer which turns all string variables
into numbers. This has the benefit of being easily recognizable to the machine but has the
downside of the computer thinking the value is a continuous integer; however, this process
is necessary to do before running some of the chosen machine learning algorithms. Ideally,
One Hot Encoding would be the best option if it were not due to the cardinality of some
features in this dataset. The next piece of data preprocessing was adding an interaction
term, Gold per Minute. This stat combined gold and duration of the game to see if the
rate of the gold gathered had an impact on win. Finally, the data was split into testing
(20%) and training data (80%).

3. Methods and Performance Comparison

3.1. Design of Experiment

As discussed earlier in this document, this dataset is specifically a classification problem
trying to determine the Boolean value of the feature “Win”. Each algorithm was selected
to classify a discrete value rather than a continuous one. Each algorithm will have the same
testing and training data and will be compared to one another using Training Accuracy,
Testing Accuracy, and the R2 score. These metrics were chosen to measure performance
since training accuracy and testing accuracy can be accurate measures of performance in a
classification problem. The R2 score was selected to compare the model with other models
that did not have the same dataset. The final metric taken was time. Even though, it is
not very important in this analysis since time is not a heavily impacting factor, it was still
taken since it can help decided which model is best for this dataset. Before the discussion
of each dataset, it is important to note that each algorithm had its hyper parameters
tuned to perform optimally for this experiment. The results of the parameter turning are
listed below with the discussion of each machine learning method. The appendix includes
resources and references for more details such as Figure 4.

3.2. Random Forest

The Random Forest algorithm is a non-parametric model that performs the best in
classification. Random Forest is a combination of several decision trees and makes decisions
based on a subset of the data. Since most of the features in the dataset are binary, it was
assumed this model would perform the best. The parameters tuned were the max depth,
the max features, and the number of variables in each subset. The max depth is farthest

the random forest can construct a decision tree. For example, if the max depth is 3,
then the maximum number of decisions in each decision tree is 3. This keeps the model
from overfitting and improving the run time. The max feature is selecting if any feature
reduction should be done to the dataset before each decision tree. The number of variables
per subset is self-explanatory. The results of the Random Forest Classifier grid search were:
‘max’depth’: 40, 'max’'features’ ’log2’, 'n’estimators’: 100 This shows that the Random
Forest Classifier attempts to overfit the model to achieve the optimal values. This shows
this model might need to be further tuned if this model is selected. The results of the
model are: Test Score: 90.107, Training Score: 99.994, R2: 0.604 This model performed
very well, and might be the candidate for future analysis if tuned even further.

Figure 4: Example of one layer of the Random Forest

3.8. Naive Bayes Classifier

Naive Bayes Classifier model is the simplest model selected in the group of 5. The
model was expected to perform the worst despite the nature of the dataset being a great

fit for this algorithm. Naive Bayes does not have any hyper parameters to tune so once
implemented the results are the best they can get. The results of the Naive Bayes Classifier
are: Test Score: 79.183, Training Score: 77.785, R2 Score: 0.167 This model performed
better than expected, and under fit the training data. The results are not as high as
needed, so this model will not be selected.

3.4. Support Vector Machine

The support vector machine is a supervised learning algorithm that can perform both
regression and classification analysis. The support vector machine works by projecting the
data to a higher dimension this allows the use of a hyperplane to split the data into each
classification. The parameters tuned with this model were the kernel and initial C value.
The c value is the regularization parameter and is a non-negative value. The higher the c
value, the lower the initial regularization of the model. The kernel is the specific type of
SVM model used in the experiment. Among several options, the ones picked to be tuned
were rbf, linear, poly, and sigmoid. The results of the grid search were: ’C’: 2, ’kernel’:
rbf’. This shows the model performs best with lower regularization and uses the standard
rbf kernel. The support vector machine performed as followed: Training Score: 90.342,
Testing Score: 89.854, R2 Score: 0.594. This model performed very well, and its run time
was not as high as expected. This model could be a great candidate for research with this
dataset.

3.5. K-Nearest Neighbors

The next model tested with this dataset was K-Nearest Neighbors (KNN). This model
finds the nearest datapoints to the tested datapoint to determine the classification. The
model was chosen since KNN performs very well under 2 parts classifications. The param-
eters tuned with this model were the number of neighbors considered, the weight of each
neighbor, and the leaf size. The number of neighbors is important because if the value is
too large or too small, then it will be difficult to accurately compute what classification the
datapoint should be. The next parameter, weights, is the effect each neighbor has on the
datapoint. For example, with uniform weighting, all neighbors will have the same weight,
but with distance weighting, closer neighbors will have more impact on the classification
than farther neighbors. Finally, the leaf size is a value that changes how the values are
stored and how many. This mostly affects the speed of the model. The results of the grid
search were as follows: ‘leaf size’: 2, ‘n'neighbors’: 10, ‘weights’: ‘distance’. This shows the
leaf size should be much smaller than normal for this dataset, only 10 neighbors should be
considered, and each of those neighbors should be weighted on how close they are to the
datapoint. This model still overfit the data with scores of: Training Score: 100.0, Testing
Score: 86.213, R2 Score: .448. Looking at the difference in testing and training accuracy,
it is easy to see this model is still overfitting the data despite the parameters being tuned.
The R2 score also reflects how model was overly complicated towards the training data.
This model could possibly be further improved on but will not be used for this experiment.

Knn with K=90

2007 @ 0]
A 1 o
17.5 1 A EH B B 4D =
oA O oAb A
15.0 1 O MO0 00 A O S
o i LA A
_
z wvyTeTSTYTTYT . A
S 10.0 4 YT s A L]
1] = AN AV bk AR Ll ki & A
o 75 - PO TIPS AR O A A
b Ak k kb a h ikt .lll=ll L ik bk bkt ﬁ
o YNy ik & .ﬁ. ﬁ
S,I:l- s | B S ..L.-.I... bk AL A LT .ﬂ. .f
— I T = — A
25 m ST A A,
L R ROk R ik YAk ik L TRE .I._..l.
00 3@ NPT TITO TIITTYRO TV I AAAAS AN A
200 300 400 500 GO0 700 800

Gold Eamed Per Minute

Figure 5: Example of an individual KNN mapping the “Win” feature

3.6. Adaboost

The Adaboost method was the final algorithm selected. This model was not used in this
class; however, I thought it would perform very well in this data set. The model attempts to
fit a classification map to the dataset and will continue to add more and more classification
maps changing the weights to describe the dataset more accurately. The parameters tuned
with this model were the number of estimators and the learning rate. The number of
estimators is how many times the weights can be changed before the model stops. Ideally,
it is important to find the perfect number of estimators to allow for an accurate model but
does not have overfitting. The learning rate is how much the classification map is allowed
to change with each iteration. The same as gradient descent, finding the optimal learning
rate is important to not skip global minimum or to find the global minimum sooner. The
results of the grid search were: ‘learning rate’: 0.7, ‘n’estimators’: 80. This learning rate
is very close to optimal, and the number of estimators was higher than anticipated for the
parameter tuning. There could be more testing done to optimize the number of estimators;
however, this value of 80 estimators kept the model from overfitting the training set. The
results of the Adaboost were: Training Score: 88.926, Testing Score: 88.718, R2 Score:
0.548. These results were not as good as expected; however, that could be attributed to
user error, since I am very new to Adaboost models. This model should be considered for
this dataset.

3.7. Comparing Fach Model

This section will not contain much text other than show the results of each model used
in this experiment such as 2. Since model selection is not as important since all models

10

have a test accuracy of around 88+4% (Other than Naive Bayes) as shown in Figure 7.
Figure 8 depicts the training scores of each model. This allows for the selection of any of
the models and to do a deeper dive in to parameter tuning.

Table 1: Table caption

Algorithm R2 Scores | Testing Scores | Training Scores | Run Time (s)
Random Forest 0.604173 90.107 99.994 262.217
Naive Bayes Classifier 0.167079 79.183 77.785 0.058
Support Vector Machine | 0.594067 89.854 90.342 213.238
K-Nearest Neighbors 0.448369 86.213 100.000 229.297
Adaboost 0.548589 88.718 88.926 101. 849

1a

R2 Score Comparision

0.9

0.8

0.7 1

Random Forest

Naive Bayes Classifier

Suppert Viector Machine

11

K-Nearest Neighbors

Figure 6: Visual Comparison of R2 Scores

Adaboost

Test Scores

Test Scores

K-Nearest Neighbors Adaboost

Random Forest Naive Bayes Classifier Support Wector Machine

Figure 7: Visual Comparison of Testing Scores

Training Scores

Support Vector Machine K-Nearest Neighbors Adaboost

Random Forest Maive Bayes Classifier

Figure 8: Visual Comparison of Training Scores

12

4. Results and Discussions

4.1. Possible Improvements

Before the conclusion and results of the paper, it is important to discuss possible im-
provements that could be made to this experiment. These improvements were not included
due to either limited time when running the experiment or the lack of knowledge on how
to implement these improvements. The first improvement is properly scaling values at
during data preprocessing. After the experiment, I realized that I could min max scale the
string indexed value allowing for faster computing time of all machine learning techniques.
The second improvement would be implementing a neural network. These can be very
taxing to create, taking a great deal of time to even begin having a working model. This
neural network would show great improvements to the model since the gradient descent
and back propagation of neural network models can very easily be implemented into this
dataset due to the nature of all datapoints rising over time making a global minimum
easier to find than it in random locations. Another improvement can be made the machine
learning model’s tuning in this experiment. If more time is dedicated to properly tuning
each model, one could increase the accuracy even further. Since I did not have time to
tune each model accordingly, I did not want to tune any of the models in-depth. Another
improvement could be changing the K-Nearest Neighbors to Radius Neighbor Regressor
or possibly K-Nearest Centroids. These models were not selected due to time constraints,
and would not qualify for the project; however, these models could show an improvement
in testing accuracy. The final improvement would be to add more interaction terms like
Gold per Minute. Adding this term increased the accuracy of all 5 models, suggesting that
adding more interaction items would increase the accuracy of testing results.

4.2. Conclusion

Onto the results of this experiment, the main conclusion is that it is possible to balance
the game using machine learning. Machine learning algorithms can show the relationship
between each stat and the win. With earlier preliminary data analysis also proving that
the game needs other methods than just looking a win rate to determine if something is
too strong or too weak, machine Learning techniques have proven through this experiment
to work very well with this dataset, having upwards of 90% testing accuracy, which could
possibly be further improved upon. This shows that there are strong correlations in the
dataset, meaning there are reasons to do an algorithm by hand. Showing the math and
work for one of these, preferably the most optimal, model will show the correlation each
stat has to winning the game and the data points that help and/or disrupt. Since that is
outside the scope of this project, This was not conducted; however, the algorithms prove
that it is indeed possible and justifiable to investigate machine learning techniques when it
comes to balancing games. Having this web of champion to stats and stat to win may seem
convoluted; however, as shown here it gets around the bias present in multiplayer games.

13

5. Appendix

Table 2: Table caption

Feature Name: | Kills | Deaths | Assists | Gold Earned
Count 23752 | 23752 | 23752 23752
Mean 5.011 4.965 7.434 10223.871

STD 3.977 | 2.859 5.375 3479.974
MIN 0.00 0.00 0.00 666.00
MAX 29.0 20.00 40.00 25133.00

Table 3: Basic Data Analysis of Numerical Features

Feature Name:

Damage to Champions

Damage to Turrets

Damage Received

Vision Score

Count 23752 23752 23752 23752
Mean 15166.688 2685.702 20085.445 27.511
STD 9393.446 2965.702 10096.737 19.051
MIN 0.00 0.00 0.00 0.00

MAX 91579.00 52378.00 122378.00 153.00

14

Table 4: Data Type for Each Feature

Feature Name: Data Types
Unnamed int64
Champ object
Team int64
Gold Earned int64
Kills int64
Deaths int64
Assists int64
Win bool
Total Damage Dealt to Champions int64
Damage Dealt to Turrets int64
Vision Score int64
Total Damage Taken int64
Turret Kills int64
Inhibitor Kills int64
Total Minions Killed int64
Champ Level int64
Wards Placed int64
First Blood Assist bool
WR general float64
WR champ float64
Duration (in Seconds) int64
Position object
Role object

15

Table 5: Cardinality of Each Feature

Feature Name: Cardinality
Unnamed 23752
Champ 148
Team 2
Gold Earned 10602
Kills 29
Deaths 20
Assists 39
Win 2
Total Damage Dealt to Champions 15129
Damage Dealt to Turrets 7304
Vision Score 137
Total Damage Taken 15768
Turret Kills 10
Inhibitor Kills 5
Total Minions Killed 361
Champ Level 18
Wards Placed 83
First Blood Kill 2
First Blood Assist 1
WR general 79
WR champ 198
Duration (in Seconds) 1863
Position 5
Role 5

16

Table 6: Missing Percentage of Each Feature

Feature Name: Missing Percentage
Unnamed 0.0000%
Champ 0.0000%
Team 0.0000%
Gold Earned 0.0000%
Kills 0.0000%
Deaths 0.0000%
Assists 0.0000%
Win 0.0000%
Total Damage Dealt to Champions 0.0000%
Damage Dealt to Turrets 0.0000%
Vision Score 0.0000%
Total Damage Taken 0.0000%
Turret Kills 0.0000%
Inhibitor Kills 0.0000%
Total Minions Killed 0.0000%
Champ Level 0.0000%
Wards Placed 0.0000%
First Blood Kill 0.0000%
First Blood Assist 0.0000%
WR general 0.0000%
WR champ 0.0000%
Duration (in Seconds) 0.0000%
Position 0.0000%
Role 0.0000%

Table 7: Figure 13: Machine Learning Algorithm Supplementary Information

Machine Learning Algorithm Citation 1 Citation 2
Random Forest ([4]) ([5])
Naive Bayes Classifier ([6]) —
K-Nearest Neighbors ([7) (18])
Support Vector Machine (19) ([10])
Adaboost (Schapire, 2013) ([11))

References

[1] G. Gao, A. Min, and P. C. Shih, “Gendered design bias: gender differences of in-game
character choice and playing style in league of legends,” in Proceedings of the 29th
Australian Conference on Computer-Human Interaction, 2017, pp. 307-317.

[2] J. Wolf, “League 101: A league of legends beginner’s guide,” 2020.

[3] A. Macabasco, “Absolute beginner’s guide to league of legends,” Mobalytics, 2021.

17

[4]

[5]

2

G. Biau and E. Scornet, “A random forest guided tour,
197-227, 2016.

Test, vol. 25, no. 2, pp.

T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees in a random
forest?” in International workshop on machine learning and data mining in pattern
recognition. Springer, 2012, pp. 154-168.

S. Mukherjee and N. Sharma, “Intrusion detection using naive bayes classifier with
feature reduction,” Procedia Technology, vol. 4, pp. 119-128, 2012.

L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p. 1883, 2009.

H. Samet, “K-nearest neighbor finding using maxnearestdist,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 243-252, 2007.

W. S. Noble, “What is a support vector machine?” Nature biotechnology, vol. 24,
no. 12, pp. 1565-1567, 2006.

L. Zhang, W. Zhou, and L. Jiao, “Wavelet support vector machine,” IFEFE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp.
34-39, 2004.

X. Li, L. Wang, and E. Sung, “Adaboost with svm-based component classifiers,”
Engineering Applications of Artificial Intelligence, vol. 21, no. 5, pp. 785-795, 2008.

18

	Dataset Description
	Introduction to the Dataset
	Brief Description of League of Legends
	Description of the Map
	Description of the Gameplay

	Data Analyzation, Visualization, and Pre-processing
	Further Description of Dataset
	Data Visualization
	Data Pre-Processing

	Methods and Performance Comparison
	Design of Experiment
	Random Forest
	Naïve Bayes Classifier
	Support Vector Machine
	K-Nearest Neighbors
	Adaboost
	Comparing Each Model

	Results and Discussions
	Possible Improvements
	Conclusion

	Appendix

